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Abstract

The utility of multi-angle optical remote sensing for terrestrial carbon cycle estimation is demonstrated through theoretical development,

POLDER data analysis, and a case study of carbon cycle in a boreal forest. Progress in canopy-level photosynthesis modeling suggests that

simpler big-leaf photosynthesis models are giving ways to more complex sunlit/shaded leaf separation models. This advancement in

ecological modeling has increased the demand for advanced description of canopy architecture. Such demand may be mostly met through the

use of multi-angle remote sensing techniques. In addition to leaf area index (LAI), another canopy parameter, the foliage clumping index, can

be derived from multi-angle remote sensing. These two parameters are the basis for separating sunlit and shaded leaves. As leaf

photosynthesis is nonlinearly related to incident radiation, such separation avoids the problems of big-leaf models that only make use of the

total radiation absorption by the canopy without considering the distribution of radiation among leaves. A practical conclusion is that the

traditional way of mapping the net primary productivity (NPP) through its correlation with the remotely sensed fraction of photosynthetically

active radiation (FPAR) absorbed by plant canopies is only a very crude approximation and could be replaced with mapping LAI and

clumping index and modeling NPP with advanced photosynthesis models. This is a step forward in remote sensing applications because

single-angle remote sensing can only acquire information on the effective LAI related to the canopy gap fraction in the viewing direction and

the amount of shaded leaf area is unknown.
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1. Introduction

Satellite remote sensing has been shown to be powerful

tools for local (Band et al., 1991; Running et al., 1989),

regional (Cihlar, Chen, & Li, 1997; Liu, Chen, Cihlar, &

Chen, 2002; Veroustraete & Myneni, 1996), and global

ecological applications (Hunt et al., 1996; Potter et al.,

1993; Sellers et al., 1996). Previously, Landsat and SPOT

images were often used for local applications, and only

AVHRR images were available for regional and global

applications. With the successful launches of new sensors,

including VEGETATION on board SPOT-4 platform,

MODIS, MISR and ASTER of the Terra mission, and the

short-lived POLDER as part of ADEOS, our ability in

ecological monitoring and modeling has been greatly

improved. In addition, several forthcoming high spectral

resolution and hyperspectral sensors as well as POLDER II

sensor will soon be available. Technical improvements have

been made in all remote sensing domains including spectral,

angular, spatial and temporal resolutions. We are therefore

presented with an unprecedented challenge to fully utilize

these data to retrieve new information and achieve new

knowledge.

As monitoring and modeling terrestrial carbon cycle has

been one of the main drivers for many of the space missions,

we will explore the utility of multiple angle remote sensing

for terrestrial applications. Traditional remote sensing appli-

cations have mostly focused on extracting biophysical and

biogeochemical information from multi-spectral signatures,

and there were few demonstrations of the useful additional

information retrieved from multi-angle data (e.g., Liang et
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al., 2000), until recently when airborne (Bréon et al., 1997)

and space-borne (Bicheron & Leroy, 1999; Bréon & Colzy,

1999) multi-angle data became available. It is widely

perceived that multi-angle measurements would be sensitive

to vegetation structures and therefore can provide advanced

structural descriptions. Recently useful angular signatures

related to vegetation structure were found (Chen, Liu,

Leblanc, Roujean, & Lacaze, 2001; Lacaze, Chen, Roujean,

& Leblanc, 2002). The purpose of this paper is to demon-

strate the implications of these findings on mapping the net

primary productivity (NPP), which forms an important

component of terrestrial carbon cycle.

2. Existing theories for NPP estimation

2.1. Empirical methods of mapping NPP

Solar radiation is the most critical driver of plant growth,

as it provides the photosynthetically active radiation (PAR)

for leaf photosynthesis and the thermal energy for biological

activities. As the first approximation, the net amount of

plant growth, in terms of net storage of carbon in plant

tissues per unit ground surface area and time, i.e., NPP, is

proportional to the total amount of radiation absorbed by the

plant canopy (Monteith, 1972). As optical remote sensing

provides measurements of the amount of reflected solar

radiance from vegetated surfaces, it offers a means to obtain

the total absorbed PAR (APAR) by plant canopies (Li &

Moreau, 1996). NPP or Gross Primary Productivity (GPP)

has therefore been mapped at the global scale (Goetz &

Prince, 1998; Potter et al., 1993; Prince & Goward, 1995)

through its linear relationship with APAR, i.e.,

NPP ¼ eAPAR ð1Þ

where e is the conversion rate of APAR into NPP. APAR is

calculated as PAR� FPAR, where PAR is the incoming

PAR and FPAR is the fraction of PAR absorbed by a

vegetation canopy. As FPAR can be derived using remote

sensing data, Eq. (1) is useful for regional and global

applications. Since e is species dependent, a concurrent land
cover map is often used to implement this method. There

has been increasing recognition of the importance of auto-

trophic respiration that is not directly related to APAR but is

related to biomass and temperature, and therefore, Eq. (1)

has been reformulated in various ways (Prince & Goward,

1995; Ruimy, Dedieu, & Saugier, 1996).

2.2. Simple process models for mapping NPP

Farquhar’s leaf-level photosynthesis model (Farquhar,

von Caemmerer, & Berry, 1980) has been widely used to

simulate the canopy-level photosynthesis with various

methods for scaling from leaf to canopy. The model

allows simulations of photosynthetic processes under var-

ious weather conditions and therefore is a methodological

improvement over the empirical methods mentioned

above. Big-leaf models are the simplest of this kind and

have been used for regional (Kimball, Thornton, White, &

Running, 1997) and global (Hunt et al., 1996; Sellers,

Berry, Collatz, Field, & Hall, 1992) NPP calculations.

These models are driven by remote sensing inputs of land

cover types or leaf area index (LAI) or both. The LAI, in

this case, is used to calculate the APAR and hence the

mean PAR irradiance on leaves to drive the Farqhuar leaf-

level model for canopy-level photosynthesis calculations.

An improvement is made to such an approach by consid-

ering the vertical gradient of PAR irradiance on leaves

(Sellers et al., 1992). Although the mathematical descrip-

tion of the effect of APAR on photosynthesis in big-leaf

models is different from that of Eq. (1), the essential

contribution of remote sensing to NPP mapping is very

similar between these two methods.

3. Recent advances in canopy photosynthesis modeling

and new data demand

Although aforementioned methods are effective, they

represent only the crude first approximations of the com-

plicated photosynthetic processes in plant canopies with

various foliage architectures. As we are now afforded with

many new remote sensing capabilities, alternatives are to be

sought.

Big-leaf models for canopy evapotranspiration (ET)

estimation have a long history starting from the Pen-

man–Monteith equation (Monteith, 1973). Big-leaf ET

models have been considered to be adequate for simulating

water fluxes measured above plant canopies (McNaughton

& Jarvis, 1991; Raupack & Finnigan, 1988) in spite of

questions regarding within-canopy anti-gradient flows in

the 1980s (see review by Shuttleworth, 1989). However,

few tests of big-leaf photosynthesis models were made

until recently when simultaneous CO2 flux measurements

above and below plant canopies (Black et al., 1996;

Goulden et al., 1997) were available for such model tests

(Chen, Liu, Cihlar, & Goulden, 1999). Chen et al. (1999)

found that while the Penman–Monteith ET model simu-

lated measured H2O fluxes well, big-leaf photosynthesis

models suffered several major drawbacks and compared

poorly with measurements at hourly and daily time steps.

Although big-leaf models can be calibrated to specific sites

for estimating seasonal trends of photosynthesis, the cali-

brated coefficients used in the models would be site

specific. They concluded that big-leaf photosynthesis mod-

els are not suitable for remote sensing applications as it

lacks generality required for large area applications. Lai,

Katul, Oren, Ellsworth, and Shafer (2000) also found the

inadequacy of a big-leaf photosynthesis model for stand-

level simulations. Chen et al. (1999) successfully tested an

alternative using the sunlit/shaded leaf separation strategy
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based on Norman (1993). Independent works of Du Pury

and Farquhar (1997) and Wang and Leuning (1998) also

came to the same conclusion in favor of sunlit/shaded leaf

models for simulating canopy-level photosynthesis. The

other alternative based on multilayer strategy (Bonan,

1995; Foley, 1994) seems to receive less attention in

recent years as models of this type are not as effective

in capturing the radiation gradient within the canopy as the

sunlit/shaded leaf models. Nevertheless, multilayer models

have the irreplaceable advantage of describing the different

biological properties of leaves in different layers, such as

nitrogen content and photosynthetic capacity, as time-

integrated outcomes of the light gradient with the depth

into the canopy (Sellers et al., 1992).

Since it has been demonstrated that sunlit/shaded-leaf

and multilayer models, or combination of them, are more

reliable than big-leaf models, we then need to know how

these models can be implemented using remote sensing

inputs. LAI is the basic canopy structural parameter

needed for any process-based canopy photosynthesis mod-

els. Regional (Chen et al., 2002; Liu, Chen, Cihlar, &

Chen, 1999) and global (Myneni, Nemani, & Running,

1997; Sellers et al., 1996) LAI maps have been derived

from AVHRR images. However, the single LAI parameter

is insufficient to describe the effect of canopy architecture

on radiation absorption and distribution in the canopy.

Vegetation at the Earth’s surface has various levels of

foliage organization. Herbaceous canopies (crops and

grasses) generally have simple structures with leaves more

or less randomly distributed in space, whereas foliage in

forests is often organized in structures at various hierarch-

ical levels, such as shoots, branches, whorls, tree crowns,

and tree groups. We therefore need at least one additional

parameter to characterize the leaf spatial distribution pat-

tern. The foliage clumping index (Chen, 1996a; Nilson,

1971) has been shown to be a good choice for this

purpose. The use of a clumping index is critical in any

photosynthesis models, either empirical through the calcu-

lation of APAR or process-based through the calculation

of the average PAR irradiance on all leaves or on sunlit

and shaded leaves separately. However, the clumping

index is a particularly important input in sunlit/shaded

leaf models (Chen et al., 1999) as its value greatly

modifies the amounts of sunlit and shaded leaves. As

foliage clumping increases at a given LAI, i.e., leaves

are more aggregated in clumps, the amount of sunlit leaves

decreases and that of shaded leaves increases, changing the

final outcome of canopy photosynthesis. The use of the

clumping index therefore captures the ecological impor-

tance of existing canopy architectural difference of various

vegetation types. In mapping NPP of boreal ecosystems

(Liu et al., 1999), one value of clumping index was

assigned to each cover type. However, as the clumping

index can vary considerably for a cover type, it is highly

desirable to map the spatial distribution of this index using

remote sensing data.

4. Deriving canopy architectural information from

multiple angle remote sensing

The essential information for leaf area contained in

optical remote sensing measurements made at a few angles

is the effective LAI, taken as the product of LAI and the

clumping index (Chen, 1996a). This principle was demon-

strated using Landsat-5 data for boreal conifer forests (Chen

& Cihlar, 1996). This is because radiative signals from

shaded leaves are weak and the total reflected solar radiance

measured at a few angles results mostly from sunlit leaves

(Hall, Huemmrich, Goetz, Sellers, & Nickeson, 1992).

However, if similar measurements are made over a wide

range of view zenith angles, the pattern of variation in the

amount of sunlit leaves seen at the various angles contains

the information of shaded leaves. To demonstrate the

physical principles of deriving shaded leaf information from

multiple angle remote sensing, some typical bidirectional

reflectance distribution functions (BRDF) are shown in Fig.

1. The points in Fig. 1 are measurements made in June 1998

by the POLDER-I sensor onboard of ADEOS (Bréon et al.,

1999) from three uniform pixels of grassland, deciduous

forest and conifer forests in Canada. The curves are simu-

lated using a kernel-based model (Leblanc et al., 2001) for

BRDF on the principal solar plane formed by the sun,

satellite and ground target, while the data points are all

Fig. 1. Typical bidirectional reflectance distribution function (BRDF)

curves for three surface types: grassland, deciduous and conifer forests.

Points are ADEOS POLDER measurements at all angles in the hemisphere

in June 1998 in Canada for a selected uniform pixel for each cover type.

The curves are simulations using a model for the BRDF on the principal

solar plane. The scattering angle is the difference between the sun angle and

the view angle to the ground target. The center of the pixels are

(111j15V41WW, 50j58V43WN) for grassland, (75j33V19WW, 46j41V14WN) for
deciduous forest; and (75j07V18WW, 48j51V51WN) for conifer forests.
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available measurements for a pixel at various observation

angles in the hemisphere. The solar zenith angle at the

various dates of measurements varied in a range from 24j to

31j. The data are shown against the scattering angle, which

is the angle between the illumination (sun) and observation

(satellite). Different illumination and view geometries in the

measurements contribute to the scattering of data points, and

the model only represents one plane in the hemisphere. The

observed and modeled reflectances of all three cover types

exhibit large variations against the scattering angle. The

reflectances were the largest at the hotspot, i.e., the scatter-

ing angle is zero where the illumination and observation

angles coincide, and the smallest at the darkspot where

shadows created by the vegetation canopy is maximally

observed. These cases are markedly different from the

Lambertian case (not shown) that would be a horizontal

line in the plot. A Lambertian surface makes isotropic

reflection, meaning no variation of the reflected radiance

with view angle. The measured and modeled BRDFs from

the three types of vegetation covers are distinctly different in

the overall magnitude of near-infrared reflectance and the

variation pattern. Grassland is generally covered by leaves

randomly distributed as a turbid medium. The grass canopy

presents a variable amount of shadows to the sensor as the

view angle changes. Conifer with its highly organized

canopy architecture shows a BRDF curve with a relatively

large amplitude. Deciduous forest is the intermediate case.

The magnitude of the hotspot is determined by both optical

properties of the foliage and background (soil, moss and

understory) and canopy architecture determining the ability

of the canopy to trap photons. The darkspot is also deter-

mined by the optical properties of foliage and background,

but more dominantly by the amount of the shadow created

by the canopy. The darkspot of the conifer pixel is much

darker than that for grass and deciduous forest pixels

because the large amount of shadows on the ground and

on the shaded side of conifer tree crowns observed at the

darkspot. The shaded tree crown component may be partic-

ularly important in this context as the tree crown is one of

the most important scales of foliage clumping. In addition to

tree crown size and tree number density, the foliage density

in the tree crowns has a pronounced effect on the overall

foliage clumping. The denser the crowns, the more clumped

is the canopy, and the more shadows on the tree crowns will

be observed in the forward scattering side. This is the basic

physics of relating canopy-level foliage clumping to the

amplitude of BRDF curves. Quantitatively, the clumping

index can be related to an angular index formulated using

the hotspot and the darkspot values of the BRDF curve. It is

named as the Hotspot–DarkSpot index (HDS), and is

mathematically expressed as (Chen et al., 2001; Lacaze et

al., 2002)

HDS ¼ �HS � �DS
�DS

ð2Þ

where qHS is the reflectance at the hotspot, and qDS is the

reflectance at the darkspot. The value of the darkspot is not

only determined by the canopy geometry but also leaf

optical properties controlling the amount of multiple scatter-

ing in the canopy. Hence, the difference in the reflectance at

hotspot and darkspot is normalized against that at the

darkspot to reduce the influence of leaf optical properties

on the index and to accentuate the importance of canopy

geometry. The values of HDS for the three cases shown in

Fig. 1 are 0.38 for grassland, 0.66 for deciduous forest, and

1.43 for conifer forest.

Using the space-borne POLDER data acquired in late

May and June 1998 over Canada and available ground data

of foliage clumping index (X) acquired by TRAC (Chen,

Rich, Gower, Norman, & Plummer, 1997), the relationship

between HDS and X was investigated. Fig. 2 shows a

summary of the investigation, where HDS for each of the

three major cover types is taken as the average of all 7� 7-

km pixels dominated by one of cover types, and X is taken

as the mean value of available TRAC measurements. As

hotspot and darkspot are not routinely sampled by POL-

DER, models were used to fit BRDF curves to the available

POLDER data points and to find the hotspot and darkspot

values (Lacaze et al., 2002; Leblanc et al., 2001). Based on

the available POLDER data and limited ground data for X,
the relationship between HDS and X as shown in Fig. 2

appears to be approximately linear, i.e.,

X ¼ aþ bHDS ð3Þ
where a and b are coefficients determined by the linear

regression. These coefficients found from the regressions

are somewhat different between red and near-infrared (NIR)

bands, suggesting that the influence of leaf optical proper-

ties is not totally eliminated by HDS. However, these

empirical relationships give us confidence in retrieving

canopy structural information from multi-angle remote

sensing. These relationships have been refined using air-

borne POLDER data over boreal forests in Canada (Lacaze

et al., 2002). Sandmeier and Deering (1999) also found

improvements in boreal land cover classification using an

angular index. Through model inversion, it has also been

shown that multiple angle measurements improve LAI

retrieval results over those using only single-angle measure-

ments (Diner et al., 1999; Knyazikhin et al., 1998).

The five-scale model (Leblanc & Chen, 2001) with a

new multiple scattering scheme (Chen & Leblanc, 2001)

was used to explore the generality and reliability of the

empirical relationships shown in Fig. 2 and to investigate

whether better angular indices can be devised. The five-

scale simulations were made with several input structural

parameters varying in wide ranges including stem density

(500–3500 stems/ha), crown height (1–20 m), crown

radius (0.5–3 m), and LAI (0.5–8). The foliage density

inside tree crowns resulting from this parameter setting

ranges from 0.05 to 30 m2/m3. The simulated results are

summarized in Fig. 3. As shown in Fig. 3 a reasonably
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strong relationship between X and HDS exist for a wide

range of canopy conditions until extreme of sparseness or

denseness of the canopy is reached (Leblanc et al., 2001).

However, the general relationship between X and HDS

appears to be nonlinear when all modeled results including

extreme canopy conditions are used. We therefore also

tested another angular index (Leblanc et al., 2001), named

the Normalized Difference between Hotspot and Darkspot

(NDHD), defined as NDHD=(qHS� qDS)/(qHS + qDS). The
general relationship between X and NDHD as simulated is

linear, suggesting NDHD may be a better index than HDS.

However, more comprehensive investigation is needed

before solid conclusions on the choice of angular indices

are drawn.

5. Importance of foliage clumping in canopy radiation

and photosynthesis modeling

5.1. Radiation modeling

The importance of clumping index in canopy radiation

modeling may be demonstrated using the following equa-

tion for calculating the radiation penetration through a plant

canopy (Nilson, 1971):

PðhÞ ¼ e�GðhÞLX=cosh ð4Þ

where P(h) is the probability of light penetration through the
canopy at zenith angle h; L is the LAI; and G(h) is the mean

projection of leaf normals in the direction of h. G(h) is

determined by the leaf angle distribution, while the clump-

ing index X characterizes the spatial distribution of leaves.

The importance of X in radiation modeling is two folds: it

affects both FPAR and the radiation distribution in the

Fig. 3. Relationships between clumping index and angular indices NDHD

and HDS simulated using the five-scale model for black spruce forest

stands at the solar zenith angle (SZA) of 35j. The clumping index depends

on canopy architectural parameters such as stem density, crown size, foliage

density within tree crowns, and tree spatial distribution, and shoot level

clumping. The NDHD and HDS are obtained from the simulated

bidirectional reflectance distribution function on the principal solar plane.

Fig. 2. The relationship between the Hotspot–Darkspot angular index (HDS) and the clumping index (X) found from space-borne POLDER data over three

land cover types in Canada (after Chen et al., 2001; Lacaze et al., 2002). The ranges of X are from all available ground measurements made in Canada, and the

ranges of HDS are standard deviations of all uniform 7-km pixels (with >50% dominant cover type) in Canada.
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canopy. Mathematically, FPAR can be calculated as (Chen,

1996b; Goward & Huemmrich, 1992)

FPAR ¼ 1� qPARabove � ð1� qPARbelowÞPðhÞ ð5Þ

where qPARabove and qPARbelow are the PAR albedos above

and below the canopy, respectively. Using qPARabove, the

fraction of PAR directly reflected off the top of the canopy is

considered, and using qPARbelow, the small portion of PAR

absorbed by the canopy after reflection by the surface

underneath the canopy is also included.

FPAR is often estimated based on Eqs. (4) and (5) with

an input of LAI without considering the clumping, i.e., X is

assumed to be unity. If the input LAI is obtained indirectly

using optical instruments, such as LAI-2000, it is actually

the effective LAI denoted by Le, meaning that it is the

product of LAI and X, i.e., Le =XL (Chen, 1996a). For this

case, the calculation of FPAR is accurate. Reasonably

accurate LAI values can be obtained using allometric

equations established from destructive sampling (Gower et

al., 1977). When the LAI obtained in this way is used

without considering the clumping effect, FPAR calculations

will be positively biased. For example, a typical boreal

conifer forest has LAI of 4 and X of 0.5. Taking the usual

value of 0.5 for G(h) under the assumption of random leaf

angle distribution, the probability of radiation penetration

through the canopy at h = 45j will be 0.06 without consid-

ering clumping (i.e., L= 4 and X = 1.0, the random case), but

it will be 0.24 when the clumping is considered (i.e., L= 4

and X = 0.5). If albedos above and below the canopy are

taken as 5% and 6%, respectively (Chen, 1996b), FPAR of

the canopy will be 0.894 in the random case but 0.724 in the

clumped case. For such a case, the relative error in FPAR

estimation without considering the clumping effect will be

23.5%, i.e., (0.894–0.724)/0.724. Such a magnitude of error

cannot be ignored for many applications.

The effect of clumping on radiation distributions within

plant canopies is the main issue that multi-angle remote

sensing can make a critical contribution. For the above case,

one may argue that since only an accurate effective LAI is

needed for FPAR calculations and it can be accurately

measured using optical instruments, we do not need to

bother with canopy structure and the actual LAI. However,

at a given value of effective LAI, the ratio of shaded to

sunlit leaves will be very different whether or not the foliage

is clumped, even though FPAR remains the same. The

equations used for the sunlit and shaded LAI calculations

are based on Norman (1993), and modified to consider the

clumping effect (Chen et al., 1999), i.e.:

Lsun ¼
cosðhÞ
GðhÞ ½1� expð�GðhÞXL=cosðhÞÞ� ð6Þ

Lshaded ¼ L� Lsun ð7Þ

The effects of canopy geometry on the separation of

sunlit and shaded leaves are described through the param-

eter G(h) for the foliage angular distribution pattern and X
for the spatial distribution pattern. Parameters such as tree

crown size, density, and shape influence the value and

angular variation pattern of X (Kucharik, Norman, Mur-

dock, & Gower, 1997). Geometrical models can be used to

investigate suitable forms of these two parameters for

different applications.

Using the same example as the calculation of APAR

above, i.e., L= 4, X = 0.5, G(h) = 0.5, and h = 45j, the

amount of sunlit LAI will be 1.07, and the shaded LAI

will be 2.93. If the effective LAI, i.e., Le = 4� 0.5 = 2.0,

were taken as the actual LAI, the sunlit LAI and FPAR

would be the same (if the small effect of multiple

scattering within the canopy is ignored) but the shaded

LAI would be reduced to 0.6. This problem of under-

estimating the shaded LAI may be a common problem

facing LAI retrieval from optical measurements at nadir

because optical signals at nadir mostly respond to the

canopy gap fraction (or sunlit leaves) in the vertical

direction. The inversion of the gap fraction using Eq. (4)

provides only the effective LAI, not the true LAI. Fig. 4

shows systematically how the sunlit and shaded LAI

varies with clumping index when Le is taken as a constant

of 2.0 and h is fixed at 45j. Since Le is constant, the

sunlit LAI is invariant at the same sun angle as the

clumping index changes, but the shaded LAI increases

dramatically as the clumping index decreases (more

clumped), so does the total LAI. It is intuitively under-

standable that the more clumped a canopy is, the more

shaded leaves are beneath sunlit leaves. The fundamental

question is then whether it matters to ignore the contri-

butions of shaded leaves to photosynthesis and carbon

absorption in plant canopies.

Fig. 4. Variation of sunlit and shaded leaf area index (LAI) with clumping

index when the effective LAI (Le) is taken as a constant of 2.0. Nadir-view

optical multi-spectral remote sensing signals contain information on the

effective LAI rather than the actual LAI. As the clumping index decreases

(more clumped) at the same effective LAI, the shaded LAI and the total LAI

increase. Note: Le = LAI*X.
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5.2. Photosynthesis modeling

To understand the importance of shaded leaves in plant

canopies, we investigated the contribution of shaded leaves

to the total canopy photosynthesis as an example. For this

purpose, we only investigate the cases with a constant

effective LAI (Le) as an input with varying clumping index

(X), while the obvious effect of clumping on APAR (see

Section 5.1) and photosynthesis at the same LAI is not

included here. When Le remains the same, the amount of

sunlit leaves and APAR will not change with clumping, but

the amount of shaded leaves will increase with an increasing

degree of clumping. Although shaded leaves in the canopy

receive much less radiation than the sunlit leaves, they can

make a large contribution to the total canopy photosyn-

thesis. This is because (i) the mean PAR irradiance on

shaded leaves not only originates from the sky diffuse light

but also from multiple scattering within the canopy and (ii)

the response of leaf photosynthesis to the level of irradiance

is not linear. Leaf photosynthesis generally becomes nearly

saturated at a level only about 1/3 of the full sunlit (Fig. 5).

This light response curve without including the dark respi-

ration is calculated based on a common formulation (Bonan,

1995; Jarvis & Morison, 1981). Much of the solar energy

reaching sunlit leaves is therefore not fully utilized for

photosynthesis. It was found that the light use efficiency

for diffuse light was several times larger than that of direct

light for boreal forests (Gu et al., 2002). Indeed, shaded

leaves can, under bright sky conditions, produce photosyn-

thesis at a considerable magnitude compared with sunlit

leaves. When the foliage is clumped, most leaves are in

shade, even at the solar noon, and the collective contribution

of shaded leaves may exceed the sunlit leaves on a daily

basis. For a spherical leaf angle distribution, i.e., G(h) = 0.5,
the maximum sunlit LAI is 2, and if total LAI is larger than

4, most leaves are shaded in a given time.

The above arguments are demonstrated using the Boreal

Ecosystem Productivity Simulator (BEPS) (Chen et al.,

1999; Liu et al., 1999) which calculates the total canopy

photosynthesis (A) as the sum of sunlit and shaded leaf

contributions (Norman, 1993), i.e.,

A ¼ Asun	Lsun þ Ashade	Lshade ð8Þ

where Asun and Ashade are the photosynthesis rates for unit

sunlit and shaded leaf areas, respectively. This type of

models has been validated using experimental data (Chen

et al., 1999; Kim & Verma, 1991). Chen et al. (1999)

developed a set of equations for calculating the mean PAR

irradiances on sunlit and shaded leaves based on a simple

two-stream model. A is considered as the gross primary

productivity (GPP), and NPP is calculated as the difference

between GPP and the autotrophic respiration. The latter is a

function of temperature and biomass, which is separated

into leaves, stems and roots (Liu et al., 1999).

BEPS was run with a dataset from an old black spruce

site. The actual daily meteorological data (including air

temperature and humidity, precipitation, total solar radia-

tion) for the whole year of 1994 (Goulden et al., 1997;

Wofsy et al., 2000) were used in the model simulation. The

LAI and clumping index of the stand were measured with

TRAC to be 4.0 and 0.5, respectively, resulting in Le = 2.0

(Chen, 1996a). Holding Le constant, i.e., LAI�X = 2.0, we

simulated the effects of clumping on the photosynthesis

(GPP) of sunlit and shaded leaves in this particular canopy

(Fig. 6). To reveal the fundamental effects of foliage

architecture on photosynthesis, we turned off the soil water

balance module during these simulations, so that the leaf

photosynthesis is not limited by the water availability under

the local environmental conditions. Without water limita-

tion, the total GPP of all sunlit leaves in the canopy remains

about the same, while the total GPP of all shaded leaves
Fig. 5. A typical response curve of leaf photosynthesis to the photosynthetic

photon flux density (PPFD) incident on the leaf surface.

Fig. 6. Gross primary productivity (GPP) simulated for sunlit and shaded

leaves separately, showing the importance of shaded leaves in their

collective contribution to the total canopy photosynthesis. In all these

simulations, the effective LAI (Le) = 2.0, so APAR and the amount of sunlit

leaves are unchanged, but the amount of shaded leaves increases with

decreasing clumping index (more clumped). The results are simulated using

BEPS (Liu et al., 1999) for a mature black spruce site in Canada. Note:

Le = LAI*X.
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increases drastically as the clumping increases. The in-

creases solely result from the increases in the shaded LAI

as shown in Fig. 4, although the main PAR irradiance on

shaded leaves decreases as clumping increases. As the sunlit

and shaded leaf separation depends not only on canopy

structure but also on solar zenith angle, the separation in

daily calculations is not exactly the same as that shown in

Fig. 4 calculated at a fixed angle of 45j, but they are similar.

It is shown that in boreal forests, shaded leaves generally

outdo sunlit leaves in their contribution to the total GPP of

the canopy. The use of clumping index then becomes critical

in canopy-level GPP assessment, given the fact that for the

same Le measured by optical remote sensing at one angle,

the amount of shaded leaves can vary depending on the

clumping index.

As the outcome of the results shown in Fig. 6, the

responses of GPP and NPP to changes in the clumping

index at the same Le are summarized in Fig. 7. NPP is GPP

less autotrophic respiration, which only changes slightly

with changes in the amount of shaded leaves for this set of

simulations. As the effective LAI remains unchanged in the

simulations, the total LAI decreases as the clumping index

increases. To be more realistic in Fig. 7, the BEPS simu-

lations were done under two water regimes: no soil water

limitation (as shown in Fig. 6) and with water limitation. In

the water limitation case, the actual precipitation and daily

weather data were used to calculate the soil water balance

and determine the predawn soil and leaf water potentials and

therefore the stomatal limiting factor (Jarvis & Morison,

1981). The modeled GPP and NPP values generally increase

with increasing clumping (decreasing clumping index).

These increasing trends are monotonic if water limitation

is not considered, but reversals of the trends at low values of

the clumping index are found under the water limitation

regime. When soil water is not limiting, the additional

shaded leaves contribute more and more to the total canopy

photosynthesis as the foliage becomes more clumped, but

when water is limiting, the additional shaded leaves tran-

spire more water and the water potential of soil decreases,

resulting in a reduction in stomatal conductance, and hence

GPP and NPP. Under the ‘‘no water limitation’’ case, both

GPP and NPP decrease about 50% from the realistic

clumped case (X = 0.5) to the hypothetical random case

(X = 1), suggesting that the additional shaded leaves in the

clumped scenario can double both GPP and NPP. When the

water limitation is considered, the decrease in GPP from

X = 0.5 to X = 1 is 37%, and the corresponding decrease in

NPP is 23%. These large magnitudes of NPP variation with

foliage clumping in both cases are alarming, showing the

potential benefit of investments in space programs for

multiple angle remote sensing.

It is also interesting to see in Fig. 7 that the modeled

maximum GPP and NPP of the stand occur at a clumping

index of about 0.5, corresponding to the actual measured

value. This suggests that foliage clumping exists with some

ecological significance. It is possible that conifer species

adapt to the boreal environment through maximizing the

diffuse light use efficiency, but there is a limit to the amount

of shaded leaves that a canopy can support because of the

limitation of soil water availability in the summer months,

which can sometimes be very dry. The canopy architecture

of boreal conifer stands consisting of long and narrow tree

crowns of dense foliage may therefore evolve from the

needs to minimize snow damages in the winter and to

maximize the light use efficiency in the summer. If only

the total radiation absorption was considered, we would

have ignored the ecological importance of the canopy

architecture containing large proportions of shaded leaves.

6. Implications on the use of multi-angle remote sensing

data

For ecological applications of optical remote sensing,

two parameters describing the status of vegetation canopy

are often used alternately. One is LAI, and the other is the

fraction of photosynthetically active radiation (FPAR)

absorbed by the canopy. From the cases demonstrated in

Figs. 6 and 7, it can be inferred that these two parameters

actually represent two different approaches in ecological

modeling. If NPP is calculated from APAR using FPAR

without considering how APAR is shared among the sunlit

and shaded leaves, the NPP estimation is only the crude first

approximation. However, if LAI is used merely to calculate

APAR, no much additional progress is made. With multi-

angle optical remote sensing, we are now able to derive not

only the correct LAI but also the clumping index. For this

case, the canopy-level photosynthesis is not calculated from

APAR but from the PAR irradiance on sunlit and shaded

leaves separately, and the results are expected to be more

accurate than the approach based on FPAR. We therefore

Fig. 7. Gross primary productivity (GPP) and net primary productivity

(NPP) as affected by the clumping index for a constant value of the

effective LAI (Le = 2.0). The ‘‘no water limitation’’ case is the extension of

the results shown in Fig. 6, while the ‘‘water limitation’’ case is calculated

based on changes in leaf stomotal conductance with soil water moisture

simulated using the actual data for the boreal forest. Note: Le = LAI*X.
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suggest that we should abandon the use of FPAR and

employ LAI and clumping index when multiple angle

remote sensing data are available.

7. Conclusion

Multiple angle remote sensing techniques are so far

underutilized for ecological applications. With the availabil-

ity of multi-angle remote sensing data, the traditional way of

mapping NPP through mapping FPAR may be replaced with

modeling NPP using canopy architectural parameters

derived from multi-angle remote sensing. LAI and clumping

index are two equally important canopy structural parame-

ters for plant growth and terrestrial carbon cycle modeling.
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